Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 12(1): 16019, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2042336

ABSTRACT

Cytokines are major players in orchestrating inflammation, disease pathogenesis and severity during COVID-19 disease. However, the role of IL-19 in COVID-19 pathogenesis remains elusive. Herein, through the analysis of transcriptomic datasets of SARS-CoV-2 infected lung cells, nasopharyngeal swabs, and lung autopsies of COVID-19 patients, we report that expression levels of IL-19 and its receptor, IL-20R2, were upregulated following SARS-CoV-2 infection. Of 202 adult COVID-19 patients, IL-19 protein level was significantly higher in blood and saliva of asymptomatic patients compared to healthy controls when adjusted for patients' demographics (P < 0.001). Interestingly, high saliva IL-19 level was also associated with COVID-19 severity (P < 0.0001), need for mechanical ventilation (P = 0.002), and/or death (P = 0.010) within 29 days of admission, after adjusting for patients' demographics, diabetes mellitus comorbidity, and COVID-19 serum markers of severity such as D-dimer, C-reactive protein, and ferritin. Moreover, patients who received interferon beta during their hospital stay had lower plasma IL-19 concentrations (24 pg mL-1) than those who received tocilizumab (39.2 pg mL-1) or corticosteroids (42.5 pg mL-1). Our findings indicate that high saliva IL-19 level was associated with COVID-19 infectivity and disease severity.


Subject(s)
COVID-19 , Adult , Biomarkers , C-Reactive Protein , Cytokines , Ferritins , Humans , Interferon-beta , Interleukins/genetics , SARS-CoV-2 , Saliva , Up-Regulation
2.
Front Immunol ; 12: 796094, 2021.
Article in English | MEDLINE | ID: covidwho-1690446

ABSTRACT

It is still controversial whether chronic lung inflammation increases the risk for COVID-19. One of the risk factors for acquiring COVID-19 is the level of expression of SARS-CoV-2 entry receptors, ACE2 and TMPRSS2, in lung tissue. It is, however, not clear how lung tissue inflammation affects expression levels of these receptors. We hence aimed to determine the level of SARS-CoV-2 receptors in lung tissue of asthmatic relative to age, gender, and asthma severity, and to investigate the factors regulating that. Therefore, gene expression data sets of well-known asthmatic cohorts (SARP and U-BIOPRED) were used to evaluate the association of ACE2 and TMPRSS2 with age, gender of the asthmatic patients, and also the type of the underlying lung tissue inflammatory cytokines. Notably, ACE2 and to less extent TMPRSS2 expression were upregulated in the lung tissue of asthmatics compared to healthy controls. Although a differential expression of ACE2, but not TMPRSS2 was observed relative to age within the moderate and severe asthma groups, our data suggest that age may not be a key regulatory factor of its expression. The type of tissue inflammation, however, associated significantly with ACE2 and TMPRSS2 expression levels following adjusting with age, gender and oral corticosteroids use of the patient. Type I cytokine (IFN-γ), IL-8, and IL-19 were associated with increased expression, while Type II cytokines (IL-4 and IL-13) with lower expression of ACE2 in lung tissue (airway epithelium and/or lung biopsies) of moderate and severe asthmatic patients. Of note, IL-19 was associated with ACE2 expression while IL-17 was associated with TMPRSS2 expression in sputum of asthmatic subjects. In vitro treatment of bronchial fibroblasts with IL-17 and IL-19 cytokines confirmed the regulatory effect of these cytokines on SARS-CoV-2 entry receptors. Our results suggest that the type of inflammation may regulate ACE2 and TMPRSS2 expression in the lung tissue of asthmatics and may hence affect susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Asthma/immunology , COVID-19/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Lung/immunology , SARS-CoV-2/immunology , Adult , Female , Humans , Male , Middle Aged , Serine Endopeptidases/immunology
3.
Viruses ; 14(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1625346

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.


Subject(s)
COVID-19/immunology , Adaptive Immunity , Chemokines/antagonists & inhibitors , Chemokines/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokines/antagonists & inhibitors , Cytokines/immunology , Humans , Immunity, Innate , Inflammation , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
4.
Cancer Cell ; 40(1): 3-5, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1517077

ABSTRACT

Anti-COVID-19 immunity dynamics were assessed in patients with cancer in a prospective clinical trial. Waning of immunity was detected 4-6 months post-vaccination with significant increases in anti-spike IgG titers after booster dosing, and 56% of seronegative patients seroconverted post-booster vaccination. Prior anti-CD20/BTK inhibitor therapy was associated with reduced vaccine efficacy.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , Immunoglobulin G/biosynthesis , Neoplasms/immunology , SARS-CoV-2/immunology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/complications , COVID-19/immunology , Follow-Up Studies , Humans , Immunocompromised Host , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Neoplasms/complications , Neoplasms/drug therapy , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Rituximab/adverse effects , Rituximab/therapeutic use , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Vaccination
5.
Front Pharmacol ; 12: 631879, 2021.
Article in English | MEDLINE | ID: covidwho-1488443

ABSTRACT

Mitogen-activated protein kinases (MAPK) and NF-kappaB (NF-κB) pathway regulate many cellular processes and are essential for immune cells function. Their activity is controlled by dual-specificity phosphatases (DUSPs). A comprehensive analysis of publicly available gene expression data sets of human airway epithelial cells (AECs) infected with SARS-CoV-2 identified DUSP1 and DUSP5 among the lowest induced transcripts within these pathways. These proteins are known to downregulate MAPK and NF-κB pathways; and their lower expression was associated with increased activity of MAPK and NF-κB signaling and enhanced expression of proinflammatory cytokines such as TNF-α. Infection with other coronaviruses did not have a similar effect on these genes. Interestingly, treatment with chloroquine and/or non-steroidal anti-inflammatory drugs counteracted the SARS-CoV-2 induced reduction of DUSP1 and DUSP5 genes expression. Therapeutically, impeding this evasion mechanism of SARS-CoV-2 may help control the exaggerated activation of these immune regulatory pathways during a COVID-19 infection.

7.
Eur J Pharmacol ; 908: 174374, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1322083

ABSTRACT

The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/pharmacology , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Chloroquine/therapeutic use , Datasets as Topic , Down-Regulation/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Drug Synergism , Dual Specificity Phosphatase 1/metabolism , Fibroblasts , Glucocorticoids/therapeutic use , Healthy Volunteers , Humans , Lung/cytology , Lung/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Middle Aged , Nasopharynx/virology , Off-Label Use , Primary Cell Culture , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
8.
Am J Emerg Med ; 48: 140-147, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1157085

ABSTRACT

OBJECTIVES: We investigated the impact of anemia based on admission hemoglobin (Hb) level as a prognostic risk factor for severe outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: A single-center, retrospective cohort study was conducted from a random sample of 733 adult patients (age ≥ 18 years) obtained from a total of 4356 laboratory confirmed SARS-CoV-2 cases who presented to the Emergency Department of Montefiore Medical Center between March-June 2020. The primary outcome was a composite endpoint of in-hospital severe outcomes of COVID-19. A secondary outcome was in-hospital all-cause mortality. RESULTS: Among the 733 patients included in our final analysis, 438 patients (59.8%) presented with anemia. 105 patients (14.3%) had mild, and 333 patients (45.5%) had moderate-severe anemia. Overall, 437 patients (59.6%) had a composite endpoint of severe outcomes. On-admission anemia was an independent risk factor for all-cause mortality, (Odds Ratio 1.52, 95% CI [1.01-2.30], p = 0.046) but not for composite severe outcomes. However, moderate-severe anemia (Hb < 11 g/dL) on admission was independently associated with both severe outcomes (OR1.53, 95% CI [1.05-2.23], p = 0.028) and mortality (OR 1.67, 95% CI [1.09-2.56], p = 0.019) during hospitalization. CONCLUSION: Anemia on admission was independently associated with increased odds of all-cause mortality in patients hospitalized with COVID-19. Furthermore, moderate-severe anemia (Hb <11 g/dL) was an independent risk factor for severe COVID-19 outcomes. Moving forward, COVID-19 patient management and risk stratification may benefit from addressing anemia on admission.


Subject(s)
Acute Kidney Injury/epidemiology , Anemia/blood , COVID-19/blood , Hospital Mortality , Hypotension/epidemiology , Respiratory Insufficiency/epidemiology , Shock, Septic/epidemiology , Aged , Aged, 80 and over , Anemia/therapy , Blood Transfusion/statistics & numerical data , COVID-19/mortality , Cause of Death , Cohort Studies , Female , Hemoglobins/metabolism , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
9.
J Inflamm Res ; 14: 199-216, 2021.
Article in English | MEDLINE | ID: covidwho-1076353

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people and crippled economies worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for this pandemic has triggered avid research on its pathobiology to better understand the pathophysiology of COVID-19. In the absence of approved antiviral therapeutic strategies or vaccine platforms capable of effectively targeting this global threat, the hunt for effective therapeutics has led to many candidates being actively evaluated for their efficacy in controlling or preventing COVID-19. In this review, we gathered current evidence on the innate nucleic acid-sensing pathways expected to be elicited by SARS-CoV-2 and the immune evasion mechanisms they have developed to promote viral replication and infection. Within the nucleic acid-sensing pathways, SARS-CoV-2 infection and evasion mechanisms trigger the activation of NOD-signaling and NLRP3 pathways leading to the production of inflammatory cytokines, IL-1ß and IL-6, while muting or blocking cGAS-STING and interferon type I and III pathways, resulting in decreased production of antiviral interferons and delayed innate response. Therefore, blocking the inflammatory arm and boosting the interferon production arm of nucleic acid-sensing pathways could facilitate early control of viral replication and dissemination, prevent disease progression, and cytokine storm development. We also discuss the rationale behind therapeutic modalities targeting these sensing pathways and their implications in the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL